
Computers & Operations Research 39 (2012) 3046–3061
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/caor
Review
Clustering of high throughput gene expression data
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High throughput biological data need to be processed, analyzed, and interpreted to address problems in

life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems

using computational methods. Clustering is one of the methods used to gain insight into biological

processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological

data analysis. However, this paper presents a review of the current clustering algorithms designed

especially for analyzing gene expression data. It is also intended to introduce one of the main problems

in bioinformatics – clustering gene expression data – to the operations research community.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering in biology has a history that goes back to Aristotle’s
attempt to classify living organisms [6]. Today, clustering geno-
mic data stands out as an approach to deal with high-dimensional
data produced by high throughput technologies such as gene
ll rights reserved.

).
expression microarrays [84]. Biological data were limited to DNA
sequence data before the genome age in the 1980s [68]. Nowa-
days, terabytes of high throughput biological information are
generated with the advent of new technologies, such as micro-
arrays, eQTL mapping, and next generation sequencing. Now, a need
for exploiting computational methods exists to analyze and
process such amounts of data in depth and in different ways to
address complex biological questions regarding gene functions,
gene co-expression, protein–protein interactions (PPI), persona-
lized drug design, systems level functional analysis of plants and
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Fig. 1. A microarray chip produced by Affymetrix courtesy.

(source: http://www.affymetrix.com/about_affymetrix/media/image-library.affx).
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animals, and organism–environment interaction. This fact has
given birth to disciplines like bioinformatics, computational
biology, and systems biology.

In physics, before mathematical models were incorporated,
i.e., before Newton, the discipline was stamp collecting
(i.e., descriptive). Incorporation of mathematical models changed
physics into a predictive science. In a similar manner, incorpora-
tion of computation into biology is changing the discipline from
being a descriptive science to a predictive science. One of the
prediction methods used in biology to analyze the high through-
put data is clustering. As a data mining method, clustering of gene
expression data was well studied during the last decade. Cluster-
ing is also a well-known and studied problem in the operations
research (OR) field. However, clustering of gene expression data is
not extensively studied by the OR community, although data
mining techniques have been used in market segmentation and
facility location problems.

Certain aspects of biological theories can be modeled using OR
tools. One of these aspects is that a small subset of genes are
typically involved in a particular cellular process of interest, and a
cellular process happens only in a subset of the samples [65].
Another aspect is that genes of the same pathway may be induced
or suppressed simultaneously or sequentially upon receiving
stimuli [149]. A third aspect is that most biologists assume an
approximately scale-free topology, or a small world property, for
graphs constructed from gene expression data [145]. Hence, one
may say that genes with high connectivity are much fewer in
number than genes with low connectivity [131]. Thus, this review
discusses many diverse approaches and algorithms that currently
exist for clustering of gene expression data from an OR perspec-
tive by introducing background in molecular biology, and pre-
senting clustering approaches and techniques. The paper is
organized as follows: Section 2 gives concise information about
molecular biology and relevant disciplines; Section 3 provides a
problem definition for clustering gene expression data as well as
representations of expression data; Section 4 reviews recent
algorithms used for clustering gene expression data; Section 5
suggests future research directions for the operations research
community; and Appendix A provides the glossary that includes
definitions of the italicized words and phrases throughout
the text.
2. Biological background

The essential cellular molecules for a biological system to
function and interact with its surrounding include DNA, RNA,
proteins, and metabolites, all of which are under physiological and
environmental control. Many different interaction layers exist
among these molecules such as PPI networks, i.e., interactomes,
gene regulatory networks (GRNs), biochemical networks, and
gene co-expression networks. A holistic picture of these interac-
tions is being studied through systems biology.

Based on the central dogma of molecular biology, DNA
transcribes into RNA, and RNA translates into proteins, some of
which then serve as catalysts in the production of metabolites. A
gene is expressed upon receiving the transcriptional signal. Genes
have activators and repressors. Genes reveal no or low expression
values without activators. Repressors block gene expression, even
in the presence of activators. Transcription factors (TFs) are
activator or repressor proteins produced by genes. TFs bind to
regulatory sites and turn them on to transcribe RNA or off. Genes
may show cascade interactions. For example, the product of one
gene may increase or decrease the transcription rate of the other,
and this process may continue downstream including temporal or
causal order of molecular events.
It is often preferred to analyze thousands of genes’ dynamics
together rather than one at a time. The DNA microarray (Fig. 1)
has been one of the commonly used technologies to measure
thousands of gene expressions simultaneously [84], and micro-
array data have been stored in public databases such as the Gene
Expression Omnibus (GEO) for further analysis. For example, the
Affymetrix GeneChip Mouse Genome 430 2.0 Array provide
45,000 probe sets to analyze expression levels of more than
39,000 transcripts. Its Feature size is 11 mM. Eleven probe pairs
per sequence are used.

The data extracted from microarrays or a similar technology is
analyzed using a reverse engineering approach. A simplified frame-
work of reverse engineering methodology for modeling GRNs
from gene expression data is shown in Fig. 2, which is adapted
from Lee and Tzou [76]. However, it is a challenging task to infer
about GRNs because expression data are high-dimensional, com-
plex, and non-linear. Further complicating the inference are the
facts that, dynamic relations exist among thousands of genes,
expression data involve noise, and the sample-to-gene ratio is
normally very small [147] because the array chips corresponding
to samples are expensive. Co-expressed genes show coherent
expression patterns, indicating that they may have similar func-
tions [84] or co-exist in a pathway. However, different external
conditions may trigger a gene to be expressed similarly with
different group of genes [84]. Genes with similar expression
patterns are more likely to regulate each other or to be regulated
by a parent gene [92]. Here, the problem of quantifying the
relations between genes arises.

A powerful clustering approach as well as a predictive model
may detect patterns or relationships in expression data [84].
However, a predictive model should be guided by biological facts,
meaning that results of predictive models should be validated by
biological knowledge. On the other hand, biological experiments
should be guided by computational methods to make the best use
of data and reduce experimental and time costs (Fig. 3). Online
databases exist to facilitate validation of the results obtained from
predictive models. Incorporation of the database knowledge to
modeling GRNs is essential for more accurate results or for
comparing the model to reality.
3. Problem definition and representations
of gene expression data

Clustering generates individual groups of data called a parti-

tion, rather than assigning objects into already known groups as in
classification [8]. A partition is defined as follows:

P¼ fc1,c2, . . . ,csg, where s is the number of clusters;
Ps

i ¼ 1

9ci9¼ n, where n is the number of objects; and 9ci9 is the
cardinality of cluster i.

X ¼ fx1,x2, . . . ,xng is the set of n objects and Y¼fy1,y2, . . . ,yng is
the set of n patterns, where yiARd and d is the number of samples.

http://www.affymetrix.com/about_affymetrix/media/image-library.affx
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The clustering problem is finding a partition that has clusters with
objects having similar patterns.

There is no universally accepted definition of a cluster. How-
ever, objects in a cluster should be similar or coherent, and
objects in different clusters should be dissimilar. In other words,
similarity within a cluster should be maximized, and similarity
between clusters should be minimized.

Clustering is often used in the gene expression data analysis
which is an integrated process that comprises low-level and high-
level analysis. Cluster analysis for gene expression data consists of
three main steps: (1) pre-processing the data so that the cluster-
ing algorithm can use the data as an input; (2) using a clustering
algorithm with an appropriate distance measure; and (3) using an
index and/or a biological database to validate the quality of the
clusters found. Data pre-processing is essential before clustering,
since it affects clustering results. The effects of normalization and
pre-clustering techniques have been demonstrated on clustering
algorithms [120], so have the effects of filtering methods [127].
The distance measure can also affect the results of a clustering
algorithm [57].

Although there are many problems associated with cluster
analysis and there are many biological data types, this review
mainly focuses on clustering algorithms as applied to microarray
data unless otherwise mentioned. As an illustrative example we
use a breast cancer microarray data set that is available at
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi. The data
set is pre-processed [143], then 49 samples corresponding to 4 differ-
ent collection of tumors consisting of 1213 genes each is used. The
pre-processed expression image is shown in Fig. 4. Color densities and
corresponding expression values are shown on the right vertical color
bar of the figure. The samples are shown on the y-axis, while the
genes are shown on the x-axis.

Since the real partition of the samples is known for the data in
Fig. 4, clustering of samples is desired for the purpose of external
validation. K-means (see Section 4.1) as applied in R base package is
chosen for clustering. The Eucledian distance matrix between samples
and the number of clusters, i.e., 4, are inputs to the K-means
algorithm. The partition generated by K-means and the real partition
are shown in Table 1. It should be noted that the order of the
numbers identifying clusters of the real partition may not be the
same in the generated partition. The last step of the cluster analysis is
validation using the C-rand index. The C-rand value for this example is
0.343. This means that K-means could not find a partition very similar
to the real one since the best C-rand value would be 1.

3.1. Quantification of relations

Distance measures are used for defining relationships between
the biological molecules of interest. Clustering algorithms use this
relationship in different ways. Hoeffding’s D measure outper-
forms the others in quantifying non-linear associations when
Pearson correlation, Spearman correlation, and Hoeffding’s mea-
sure were compared for gene expression association analysis [40].
Bandyopadhyay and Pal [12] propose new distance measures

http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi


Fig. 4. Image plot of expression values.
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based on Euclidean and Manhattan distance measures where
normalization is dependent on the experiment type, i.e., samples.
Balasubramaniyan et al. [9] also use a local, shape-based distance
metric based on the Spearman rank correlation. The metric is
used to identify local similar regions in gene expression profiles.

Pairwise relations between genes are often preferred for quanti-
fication, because it is computationally less costly than stochastic
approaches where a relation is considered conditionally to other
relations. Correlations or distance measures, e.g., Euclidean distances
between gene pairs are calculated using the expression data, and then
the resulting data matrix is used in a clustering algorithm to find the
clusters of genes. However, use of direct distance measures between
pairs of genes is somewhat traditional as opposed to transitive
distance measures used between genes. Traditional use of a distance
measure employs the ‘‘Guilt-by-Association’’ assumption that genes
having similar expression values generally have similar functions and
the genes with dissimilar expression values do not have similar
functions [150]. The traditional approach is ‘‘Guilt-by-Association’’
because a biological function is often the result of many genes
interacting with each other rather than a result of a simple pairwise
relation [150]. However, transitive distance implies that there is at
least one path, not necessarily of length 1 as in a pairwise relation,
between two genes, and the length of this path is the distance
between them. Researchers proposed that a transitive co-expression
analysis applying a shortest path distance between two genes (Fig. 5)
gives biologically meaningful results, rather than a direct pairwise
distance measure [148,150]. Zhu et al. [150] use a hybrid distance
matrix having both direct and shortest-path distances for clustering.
Phan et al. [104] also use transitive directed acyclic graphs for
representation of expression patterns. Once the data are clustered
based on a distance measure, validation of the clustering algorithm’s
performance is essential.

3.2. Validation of the partitions

Before dealing with validation of the partitions generated by a
clustering algorithm, there are sub-problems to consider: filtering

mechanisms to be used for the data, algorithm to be used, the
number of clusters to be chosen, distance metric to be used, cut-
off height for the dendrogram of genes (in case a hierarchical
clustering is used), approach to be used like agglomerative or
divisive, validation methods, and measures for generated clusters.
These are various aspects that will affect the validation results.

Outputs of clustering algorithms need validation to check
whether or not the genes in the same clusters have biological
relations. Clusters should make sense biologically, be reliable, not
be formed by chance. The stability of a clustering algorithm, the
validation of the generated cluster using biological databases, and
the comparison with other algorithms are important aspects to
measure reliability. Stability can be assessed by both sensitivity of
the algorithm to the user-specified parameters and small modi-
fications to the data sets [4].

There are mainly four different ways to validate the perfor-
mance of a clustering algorithm: (1) visual validation: inspects if
the algorithm detects a special structure of the data, e.g., number
of clusters may be detected on 2D graphics. For example, the
simulated data in Fig. 6 implies that the optimal number of
clusters is two. (2) External validation: requires the knowledge of
the real partition, e.g., C-rand or pre-defined structure of the data.
(3) Internal validation: uses the features of the partition such as
compactness, e.g., ensuring that variance within clusters are small
and examining the separation of clusters, e.g., single linkage,
average linkage, complete linkage. (4) Biological validation: uses
biological annotations to see if the genes in clusters are enriched
for biological terms significantly.

Each clustering validation technique has its own bias towards
a given clustering criterion [36]. Ensemble and multi-objective
clustering approaches [36] are used to address the problem of
being biased towards a particular objective or a clustering
criterion. A good clustering algorithm may or may not depend
on prior knowledge or on user-defined parameters. Jiang et al.
[65] propose that the algorithm should be able to extract useful
information, detect the embedded and highly connected structure
of gene expression data, and provide graphical representation of
the cluster structure. Functions of some genes are published in
relevant databases and genes with known similar functions may
guide the clustering by being assigned to the same cluster. This
partial knowledge can also be used as an input for a clustering
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algorithm with the expectation that the resulting clusters will be
more biologically meaningful [65]. For example, Cohen et al. [29]
propose an algorithm that integrates semantic similarities from
ontology structure to the procedure of getting clusters out of a
dendrogram.

3.3. Representation of expression data and molecular interactions

Gene expression data is usually represented as an n�m matrix,
where n is the number of genes and m is the number of time points
or samples. Microarray features, or gene transcripts, are the rows of
the expression matrix and are represented as vectors. Gene expres-
sion data sets are comprised of gene expression levels over time
points, also called time course data (Table 2), or samples, such as
control vs. treated. Clustering may be performed by grouping genes
over samples or samples over genes. Since the number of genes is
normally thousands and many of the genes have low or invariant
expression values, filtering gene expression data to reduce the
dimension of the n�m matrix is often necessary. Gene interactions



Table 2
A Sample Microarray Data [63]. The first column holds the names of the genes. For

example, gene names starting with SID mean that they are not sequence verified.

Other columns are the time series samples. The numbers in the cells of the table

correspond to expression changes normalized to time zero. The changes are the

ratios of the given time point expression levels to the serum-starved fibroblast

expression levels. The data set is available at http://www.sciencemag.org/site/

feature/data/984559.xhtml.

Gene name 0 h 15 min 30 min 1 h 2 h 4 h 6 h

EST W95908 1 0.72 0.1 0.57 1.08 0.66 0.39

SID487537 EST AA045003 1 1.58 1.05 1.15 1.22 0.54 0.73

SID486735 1 1.1 0.97 1 0.9 0.67 0.81

Genes Expression values
MAP kinase phosphatase-1 1 2.09 3.37 5.52 4.89 3.05 3.27

MAP kinase phosphatase-1 1 1.52 4.39 7.03 5.45 2.93 3.91

MAP kinase phosphatase-1 1 2.25 4.67 7.94 5.94 3.76 4.46
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may be represented by graphs using an adjacency matrix. A graph G

consists of vertices V(G) that represent genes and edges E(G) that
represent relations between genes. Assuming a loopless, simple
graph the adjacency matrix A(G) has elements ai,j equal to 1 if i has
relation with j, 0 otherwise. If the corresponding graph is not
relational, i.e., binary, then a weight wi,j is associated with the edges
showing the strength of the relation between i and j.

Clusters are generated by clustering algorithms that use a data
representation as an input. The way the gene expression data is
represented, whether it be a graph, matrix, or vector, may ease
the computation for the problem on hand. For instance, a naive
hierarchical clustering (HC) algorithm has time complexity of
Oðn3Þ, however, the time complexity may be reduced to
Oðn2 log nÞ using a priority queue data structure [85]. Representa-
tion of gene expression data as an n�m matrix or a graph may
help a researcher focus on the genes of interest by making use of
matrix theory and graph theory.

Visualization and computational representation of complex
interactions between molecular components of a biological cell as
graphs enables wide range of applications [118]. Models of GRNs
fall between abstractness (like Boolean networks, or relevance
networks) and concreteness (including biochemical interactions
with stochastic kinetics [76]). Abstract models are scalable to
large graphs but are further from reality, whereas concrete
models are not scalable to large graphs but more accurately
reflect biological reality. Hence, there is a trade-off between
scalability and concreteness. Network models can be discrete or
continuous. For example, deterministic or probabilistic Boolean
networks and Bayesian networks have discrete variables whereas
the neural network models and models based on differential
equations use continuous variables. Abstract networks such as
co-expression networks use edges from hypothetical inference,
whereas concrete ones such as PPI use edges inferred from
physical interactions [150]. Chen et al. [22] construct a graph
for experimentally detected PPI. Nodes represent proteins and
edges are the interactions with edge weights calculated based on
a pre-defined formula.

There may be different relations between molecular compo-
nents. For instance, components may interact with each other,
one of the components may regulate the expression of the other
or inhibit or stimulate the activity of the other [34]. All these
relationships can be represented using graphs. Graph structures
are typically used to suggest some biological questions about
discovering potential drug targets. Graph topology reflects functional
relationships and neighborhoods of genes [34]. Graph models are a
very popular way of formalizing available knowledge of cellular
systems in a consistent framework [15]. For instance, factor graphs
are minimal graphs for inferring expression data [15]. Expression data
may be integrated with transcription factor (TF) binding data to
further infer interaction networks, and time course expression data
may be integrated with physical interaction networks to identify
pathways [15].
4. Algorithms used for clustering gene expression data

The algorithms used in clustering gene expression data can
typically be grouped into two classes: partitional and hierarchical.
However, clustering algorithms may also be grouped based on the
representation of data, relationship between clusters, distribution
of the data, and other properties. For example, some of the classes
of algorithms include flat or partition-based clustering, hierarch-
ical clustering, biclustering, model-based clustering, fuzzy clus-
tering, optimization-based clustering, network-based clustering,
and ensemble clustering. Of course, these groups may have
intersections, and there may be hybrid approaches [24]. Clusters
may be exhaustive, meaning that each object is assigned to a
cluster, or non-exhaustive, meaning that some objects may be
assigned to no cluster. Exclusive clusters are non-exhaustive ones
to which an object is either assigned or not [85]. Objects are
assigned solely to one cluster in hard clustering; whereas soft
clusters, sometimes called overlapping clusters, may have com-
mon objects with non-negative value memberships. For different
definitions of hard, soft, and partitional clustering see Manning
et al. [85]. Different types of clustering algorithms are defined
based on diverse features, such as representation of data and
relation between clusters. The following subsections review the
most recent and widely used methods. It is important to note that
some clustering algorithms deal with gene expression while other
algorithms cluster gene network. In our review we focus on those
algorithms that deal with gene expression data. More specifically,
the algorithms presented in Sections 4.1 and 4.2 typically deal
with gene expression data represented in matrix form, those in
Section 4.3 deal with gene expression data presented as graphs,
and the algorithms presented in Section 4.4 typically deal with
gene expression data represented in vector form.

EBSCO host and PubMed databases were investigated for
obtaining the articles used in the review. However, the articles
utilized were not limited to these databases. ‘‘Clustering method’’
along with ‘‘microarray data’’ or ‘‘gene expression data’’ was used
as keywords in EBSCO host. The search resulted in 250 publica-
tions of which 29 were identified as relevant to clustering gene
expression data. ‘‘Clustering of gene expression data’’ was used as
the keyword in PubMed. The search resulted in 6706 publications
of which a little over 100 were identified as relevant. The results
were filtered based on being recent (i.e., after 2005) and having
potential contribution to our review (i.e., being related to micro-
array analysis). More than 100 articles were used for the review.
Since one of our objectives is to increase the interest of OR
researchers, we provide more details on some classes of algo-
rithms such as the optimization based ones.

4.1. Flat clustering algorithms

In flat clustering, objects are partitioned based on a (dis)
similarity metric. K-means is perhaps the most widely used
method. K-means is a randomized algorithm which generates
cluster centers randomly and assigns objects to the nearest
cluster center. The algorithm modifies the location of the centers
to minimize the sum of squared distances between objects and
their closest cluster centers. Richards et al. [107] reported that
K-means performed faster and resulted in more biologically
enriched clusters compared to three other methods. In that study
K-means was used to cluster human brain expression data sets
which had approximately 20,000 genes and 120 samples. Bohland

http://www.sciencemag.org/site/feature/data/984559.xhtml
http://www.sciencemag.org/site/feature/data/984559.xhtml
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et al. [16] used K-means to cluster all left hemisphere brain
voxels, a 25,155�271 matrix is used as an input for the
algorithm. Sharma et al. [116] used a two-stage hyperplane
algorithm applied in a software package called HPCluster. The
first stage reduced the data size and the second stage was the
conventional K-means. The algorithm handled 44,460 genes
without a failure. Tseng and Wong [129] developed a clustering
method which does not force all the genes into clusters. The
method employs a truncation of the clustering tree first, and then
applies the K-means algorithm to avoid K-means being trapped at
a local minimum. The method was applied on both simulated and
embryonic stem cell data. The authors provided a C library and a
package to implement the method and visualize the data. Tseng
[128] developed a K-means derivative, applying a penalty to avoid
scattered objects being assigned into clusters and weights to
incorporate prior information. The developed method is used for
both mass spectrometry and microarray data sets.

K-means requires specification of the number of clusters
before clusters are generated. K-means is also sensitive to noise
(such as scattered objects) that is prevalent in gene expression
data [65]. Furthermore, a partition generated by K-means may not
be globally optimum since it relies on randomly chosen initial
centers. Hence, K-means is sensitive to initial partitions, and it is
applicable to data with only spherical-shaped clusters [136],
which is not always the case for gene expression data. The time
complexity of the K-means algorithm is Oði k n mÞ, where i is the
number of iterations, k is the number of clusters, n is the number
of objects and m is the dimension of an object [85].

Partitioning Around Medoids (PAM) is another widely used flat
clustering algorithm [69]. PAM computes medoids for each
cluster. PAM is computationally more costly than K-means since
it requires pairwise distance calculations in each cluster. Wang
et al. [132] used the system evolution principle of thermody-
namics based on PAM to predict the number of clusters accu-
rately. Huang and Pan [60] incorporated a gene’s function
knowledge into a new distance metric. Distances between genes
with known similar function are shrunk to 0 before the genes are
clustered using the PAM algorithm. Then, remaining genes are
assigned to existing clusters and/or new clusters.

Self-Organizing Map (SOM), which is developed based on
neural network methods is another flat clustering approach
widely used in gene clustering. Ghouila et al. [43] employed a
multi-level SOM-based clustering algorithm in the analysis of
macrophage gene expression data. SOM, like K-means and PAM,
requires the number of clusters and the grid structure of neurons
as inputs. SOM maps high-dimensional data into 2D or 3D space.
Fig. 7. Dendrogram of the simula
The potential of merging distinct patterns into a cluster can make
SOM ineffective [65].

Knowing or predicting the number of clusters correctly for a
flat clustering algorithm affects the quality of the clusters.
Jonnalagadda and Srinivasan [66] developed a method to find
the number of clusters in gene expression data. They evaluated
different partitions from a clustering algorithm and identified the
partition that describes the data best. They used an index that
measures information transfer for additional clusters.

Clusters generated using a flat clustering algorithm do not
exhibit any relations with each other, while clusters generated by
a hierarchical clustering algorithm form a hierarchy.

4.2. Hierarchical clustering algorithms

Hierarchical clustering (HC) algorithms generate dendrograms
that show relationships of objects and clusters as hierarchies
(Fig. 7). HC algorithms can be divided into two groups: agglom-
erative and divisive. In agglomerative clustering, all the objects
begin in individual clusters. Then, the object pair with the highest
similarity is found and merged to be included in the same cluster.
The objects then merge, or agglomerate iteratively, until only one
cluster exists which includes all the objects. The merging process
can be stopped at any time with a stopping criterion. A complete
run of an agglomerative clustering algorithm produces a complete
graph where each node has relations with all other nodes and a
dendrogram where relationships between all objects appear.

Divisive HC methods work contrary to agglomerative HC
methods. Divisive clustering methods iteratively divide the com-
plete graph into smaller components by finding the pair of objects
that have the lowest similarity and removing the edges between
them. Divisive clustering can be represented by a dendrogram
that gives smaller components at each successive split. The
dendrogram’s branches are the clusters. These branches also give
information about similarity between clusters.
4.2.1. Level selection methods

One challenge encountered in HC is selection of the level
which is used to cut the dendrogram through a number of
branches corresponding to the number of clusters. Wild and
Blankley [135] tested nine cluster level selection methods based
on their lack of parametrization and simplicity. Neither of these
methods outperform the others consistently on all data sets used.
Kelley et al. [70] presented an automated method for cut-off level
selection to avoid the dangers of using a fixed valued cut-off.
ted data generated for Fig. 6.
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Langfelder et al. [73] proposed an algorithm that defines
clusters from a hierarchical tree. However, they overcome the
inflexibility of the fixed-height cut-off choice of the dendrogram.
Their algorithm adapts to the shape of the dendrogram, is capable
of detecting nested clusters, and can combine the advantages of
hierarchical clustering and PAM. However, identification of opti-
mal cutting parameters and estimation of number of clusters in
the data set are still open research questions. They applied the
algorithm on both human gene expression and simulated data.
Although the algorithm has many user-defined parameters, it is
reported that it works well with default settings compared to
PAM and normal HC.

Liang and Wang [79] proposed a dynamic agglomerative
clustering method and applied this on leukemia and avian pineal
gland gene expression data. Based on the numerical results, the
proposed method was convenient for data sets with or without
noise, which is defined as scattered, singleton or mini-cluster
genes. The method collected scattered genes in a cluster and
grouped other clusters dynamically and agglomeratively.

HC algorithms are not robust to noise, and they have high
computational complexity [65] which is Oðn3Þ [85], where n is the
number of objects. They are ‘‘greedy,’’ meaning they combine the
most similar two objects at the first step, and the following steps
are affected by the initial step.

K-means and HC algorithms are root algorithms upon which
many new algorithms are built. In choosing a clustering algorithm
for an application, one should look at root clustering approaches
and the desired features required for the application [126,124].

4.3. Graph-based clustering algorithms

Some HC algorithms make use of data represented as graphs.
However, graph-based clustering algorithms are not all hierarch-
ical. As mentioned earlier, biological data may be represented
using graphs. For example, gene expression data may be regarded
as a complete graph where the genes are the nodes of the
network, and pairwise correlation values obtained from expres-
sion data are the edge weights of the node pairs. Hence, clustering
in this case becomes a graph partitioning problem. Algebraic
graph theory may be employed for the purpose of clustering. One
algebraic graph theory tool is spectral clustering, a form of graph
partitioning where the eigenvalues and eigenvectors in the
Laplacian matrix, the difference between the adjacency and
degree matrices, are usually used to reduce the dimension of
the similarity matrix. The new matrix with reduced dimensions is
used as an input for K-means or another algorithm [71]. Higham
et al. [55] developed a class of spectral clustering algorithms. They
tested the performance of the spectral algorithms on three
different microarray data sets involving different types of dis-
eases. Higham and Kalna [54] presented spectral analysis of two-

signed microarray expression data. The time complexity of a
general spectral clustering algorithm is Oðn3Þ because of the
eigenvalue computations.

Clustering based on each node’s neighbors is also widely used
for gene expression data. Huttenhower et al. [62] proposed a
graph-based clustering algorithm called nearest neighbor net-
works (NNN). This algorithm first generates a directed graph with
each gene connected to a specified number of nearest genes. Then,
the graph is converted to an undirected one by keeping only the
genes having a bidirectional relationship. Overlapping cliques of a
specified size are merged to produce preliminary networks. Then,
the preliminary networks containing cut-vertices are split, keep-
ing the copies of the cut-vertices. They also introduced a soft-
ware implementation of the algorithm proposed. Mete et al. [91]
proposed an algorithm to find functional modules from large
biological networks. The algorithm assigns nodes to the same cluster
based on how they share common neighbors. Using three steps, the
algorithm detects clusters, hubs, and outliers of the network. The
first step checks every vertex for being core, i.e., a node having a pre-
defined number of neighbors. If it is a core vertex, a new cluster is
expanded. Otherwise, the vertex is labeled as a non-member. In the
second step, the algorithm checks structure-reachable vertices, a
specified similarity measure between vertices, from a core vertex.
The third step classifies non-member vertices as hubs or outliers
depending on whether or not the isolated vertices have edges
connecting to two or more clusters. The worst case running time
of the algorithm is Oðn2Þ, however, it reduces to O(n) if the graph is
random (i.e., edges of the graph are generated randomly).

Using minimum spanning trees of a graph to cluster gene
expression data is practical since edge removal divides one group of
genes into two groups directly. Xu et al. [138] represented gene
expression data as a minimum spanning tree (MST). Clusters are then
found by three algorithms that use different objective functions to
generate subtrees. One objective is partitioning the tree into a specific
number of subtrees and minimizing the total edge distances of all
subtrees. The second objective is to minimize the distance between
the center of each cluster and its objects. The third objective is similar
to the second, except that a representative point is used instead of a
center. The study reported that not much information is lost using a
tree representation of the data sets. They also proposed a number of
clustering algorithms for MST which were implemented as a software
(available from authors). Two of the algorithms guarantee global
optimality for non-trivial objective functions.

Community structure finding algorithms use graph structures
and attempt to optimize a measure called modularity [101].
Higher modularity values are desired. Community structure
finding consists of dividing the graph into groups according to
certain structural information, like betweenness of edges, rather
than similarity information normally used in traditional cluster-
ing approaches. In Newman and Girvan [101] and Girvan and
Newman [44], the edges responsible for connecting many pairs of
vertices, not the edges having the lower weights, are removed to
find communities. With this technique, one can count how many
paths proceed along each edge with the expectation that this
number will be largest for intercommunity edges. The simplest
example of the betweenness measure is based on shortest paths.
Communities are sub-graphs where the edges within have high
density connections but the edges between have low density
connections. Communities appear to have a hierarchical structure
in most real world contexts [27]. For instance, people make up
departments and departments make up a university, just like words
make up sentences, sentences make up chapters, and chapters
compose books. In that sense, community finding is similar to an
HC approach. HC is equivalent to starting with the network of
interest, attempting to find the least similar connected pairs of
vertices, and removing the edges between them iteratively.

Newman [100] expressed modularity in terms of eigenvectors
of the modularity matrix of the network and proposed an
algorithm which has a running time of Oðn2 log nÞ to divide the
network into clusters. Ruan and Zhang [110] introduced a
heuristic that combines spectral graph partitioning and local
search to optimize modularity and a recursive algorithm to deal
with the resolution problem that refers to being unable to find
clusters smaller than a scale in network community detection.
Ruan and Zhang [110]’s algorithm has a higher weighted match-
ing score for protein community complex than that of Newman
[100]. The algorithm is also faster than [100] for networks having
more than about 1500 vertices. Clauset et al. [28] presented a fast
hierarchical agglomerative algorithm to detect community struc-
tures in very large networks. The algorithm has a time complexity
of Oðm d log nÞ, where m is the number of edges, n is the number of
vertices and d is the depth of the dendrogram. Schwarz et al. [114]
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used this algorithm to resolve functional organization in the rat
brain. Newman [97] introduced a method of mapping weighted
graphs to unweighted multigraphs, or graphs with multiple edges,
to be able to use community structure finding algorithms [101] for
weighted graphs. Gómez et al. [46] presented a reformulation of
modularity to be able to work on weighted, directed, looped graphs
defined from correlated data. It is also mentioned that other
methods such as clique percolation [103] may be employed for a
similar task with a relevant adaptation. The clique percolation
method was used to find overlapping communities in yeast protein
interaction data. Zahoránszky et al. [144] presented a new cluster
selection method designed especially for extracting clusters from
different partitions generated by the clique percolation method. The
method does not require a similarity measure and is suitable for
data with a graph representation. It relies on cohesive clusters in
which all pairs of objects are similar to each other. Stone and Ayroles
[119] proposed an algorithm to maximize modularity that mod-
ulates weights of the edges of biological data, represented as a
graph. The algorithm is applied on human and Drosophila melano-

gaster data, compared with an agglomerative HC and three spectral
clustering algorithms using 10,000 simulated data sets. The pro-
posed method (for which the MATLAB code is freely available) has
the highest percentage of correctly clustered objects and correctly
separated objects for a specified number of clusters.

Label propagation is a recently developed method for finding
community structure. It defines a community as a set of nodes
such that each node has at least as many neighbors in its own
community as in any other one. In the initial stage of the method,
Fig. 8. Hierarchical and spring embedded layouts for protein–protei
all nodes form a distinct community where each node has its own
label. Then, at each step, the nodes join with that community to
which the largest fraction of their neighbors belong by adopting
the corresponding label. If there are multiple choices, a random
decision is made with uniform distribution [125].

Newman [98] and Fortunato [39] provide more detailed reviews
on algorithmic methods to detect community structure in networks.
There are other graph-based clustering approaches [58,17]. To ease
the use of graphs in solving problems, libraries such as The Boost
Graph Library (BGL) for Cþþ and igraph [30] have been developed.
The igraph library can be embedded into higher level programs or
programming languages like C/Cþþ, Python, and R. NetworkX [49] is
a Python-based package for complex network research. Cfinder [1],
which is an implementation of the clique percolation method [103],
is used for community structure finding. There are visualization and
exploratory tools for gene clusters to be interpreted more easily.
Cytoscape and the gcExplorer [113,112] package for R programming
language are designed for such a purpose. Fig. 8 illustrates two
different layouts for an expression data generated by Cytoscape.

4.4. Optimization-based algorithms

Optimization-based algorithms may be more attractive to the
OR community since optimization is at the heart of OR. Glover
and Kochenberger [45] proposed a new modeling and solution
methodology for clustering that can be used for finding groups,
or modules, in genomic data. Modules can be regarded as cliques
of similar objects. They model the clique partitioning (CP) over
n and protein–DNA interactions in yeast galactose metabolism.
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nodes formulated as in (F2), rather than over edges as in (F1)

ðF1Þ Maximize
X
ði,jÞAE

wijxij

subject to

xijþxir�xjr r1 8i,j,rAV , ia jar, ð1Þ

xijAf0;1g 8i,jAV : ð2Þ

ðF2Þ Maximize
Xn�1

i ¼ 1

Xn

j ¼ iþ1

wij

XKmax

k ¼ 1

xikxjk

subject to

XKmax

k ¼ 1

xik ¼ 1 8iAV , ð3Þ

xikAf0;1g 8iAV , k¼ 1, . . . ,Kmax: ð4Þ

In the first formulation (F1), xij is equal to 1 if the edge (i,j) is in
the partition; 0 otherwise. The wij coefficient is the unrestricted
weight of an edge between nodes i and j. E and V represent the set
of edges and the set of vertices, respectively. In the second
formulation (F2), xik is equal to 1 if node i is assigned to clique
k. Kmax is the maximum number of cliques or clusters allowed, n is
the number of nodes, and wij is defined as in formulation (F1).
Formulation (F2) has fewer variables and constraints, compared
to (F1). Although (F2) is a quadratic model, it can be used for large
instances of the CP problem. This model is similar to the one in
Nascimento et al. [96] except that Glover and Kochenberger [45]
used a maximization objective.

Nascimento et al. [96] used a greedy randomized adaptive
search procedure (GRASP) for clustering different data sets of
microarrays which was guided by an integer programming model
similar to (F2).

Clustering based on the modularity measure introduced in
Section 4.3 uses heuristic algorithms. Maximizing the modularity
measure is also used as an objective function of the integer linear
program (ILP) in Brandes et al. [18] as follows:

Maximize
1

2m

X
ði,jAVÞ

Eij�
degðiÞdegðjÞ

2m

� �
xij

subject to

xii ¼ 1 8iAV , ð5Þ

xij ¼ xji 8i,jAV , ð6Þ

xijþxjk�2xikr1 8i,j,kAV , ð7Þ

xikþxij�2xjkr1 8i,j,kAV , ð8Þ

xjkþxik�2xijr1 8i,j,kAV , ð9Þ

xijAf0;1g 8i,j: ð10Þ

The decision variables xij are defined as 1 if nodes i and j are
assigned to the same cluster, 0 otherwise. Eij is 1 if there is an
edge between nodes i and j, 0 otherwise; deg(i) and deg(j) are the
degrees of nodes i and j; m is the total number of edges. The
equalities in (5) are the reflectivity constraints, (6) shows the
symmetry constraints, (7)–(9) are the transitivity constraints, and
(10) provides the binary constraints. The number of variables can
be reduced to ðn2Þ, and the number of constraints can be reduced to
ðn3Þ by eliminating redundant variables and constraints where n is
the number of nodes. Agarwal and Kempe [2] used the same ILP
model with a different variable definition. To solve their model,
they used a local search proposed by Newman [99] and a linear
programming (LP) rounding algorithm to find upper bounds. Chen
et al. [23] used LP to study the community structure of networks.

Lee et al. [75] proposed a graph-based optimization approach.
They modeled clustering as a quadratic program. Their method
automatically determines data distributions without a priori
knowledge about the data that makes it superior to spectral
clustering approaches.

Tan et al. [121] proposed a novel clustering approach based on
a mixed integer non-linear program (MINLP). They converted
their model to a mixed integer linear program (MILP) by introdu-
cing new variables and constraints. They applied a generalized
Benders’ Decomposition method to obtain lower and upper
bounds for the solution of MILP to converge to a global optimal
solution for large data sets. Their formulation is as follows:

Minimize
Xn

i ¼ 1

Xc

j ¼ 1

Xs

k ¼ 1

wijðaik�zjkÞ
2

subject to

Xc

j ¼ 1

wij ¼ 1, 8i, ð11Þ

wijAf0;1g 8i,j and zjkAR 8j,k: ð12Þ

Here, aik is the measure of distance for gene i having k features;
wij are the binary variables having value of 1 if gene i is in cluster
j, 0 otherwise. This model is expanded as

Minimize
Xc

j ¼ 1

wij
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i ¼ 1

Xs
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þ
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j ¼ 1
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Xn

i ¼ 1

wijðzjk�aikÞ:

Since the vector distance sum of all genes within a cluster to
the cluster center, zjk, must be 0, the optimality condition (13)
holds

Xn

i ¼ 1

wijðzjk�aikÞ ¼ 0 8j, 8k: ð13Þ

Parameter suitij is introduced to the model to restrict some
genes for specific clusters. It takes a value of 1 only for the cluster
in which a gene is allowed to be involved, but 0 for the other
clusters. This parameter reduces the computational burden of the
problem and the formulation becomes

Minimize
Xn
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k ¼ 1
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subject to
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 !
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1r
Xn

i ¼ 1

ðsuitijÞwijrn�cþ1 8j, ð16Þ

wijAf0;1g 8i,j, ð17Þ

zL
jkrzjkrzU

jk 8j,k: ð18Þ

Constraints (14) are the necessary optimality conditions; (15)
assure that each gene belongs to exactly one cluster; (16) assure
that each cluster has at least one gene but no more than n�cþ1
genes. The lower and upper bounds for the continuous variable zjk
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are zL
jk and zU

jk as shown in (18). To convert this non-linear model
to a linear model, new variables and constraints are added to the
model

yijk ¼wijzjk, ð19Þ

zjk�zU
jkð1�wijÞryijkrzjk�zL

jkð1�wijÞ, ð20Þ

zL
jkwijryijkrzU

jkwij 8i, 8j, 8k: ð21Þ

Tan et al. [122] applied an algorithm guided by the above
model to three different microarray data sets. Hayashida et al.
[51] proposed two graph theoretic approaches: (1) maximizing
the number of genes covered by at most a constant number of
reporter genes, which are used to report the expression level of a
gene, and (2) minimizing the number of reporter genes to cover
all the nodes of the directed network. McAllister et al. [88]
presented a computational study to solve the distance-dependent
rearrangement clustering problem by developing a MILP. They
presented three models based on the relative ordering of the
elements, assignment of the elements to a final position, and
distance assignment between a pair of elements. They reported
that their models can be used for discoveries at the molecular
level. Dittrich et al. [32] attempted to solve the problem of finding
biologically meaningful sub-networks from PPI data. They trans-
formed the problem to a price-collecting Steiner tree (PCST)
problem, where the total sum of the edge weights of the subtree
and the profits associated with the nodes not in the subtree are
minimized. They were able to solve large instances of the problem
in a reasonable time to optimality by the ILP approach for the
transformed problem.

4.4.1. Metaheuristic clustering algorithms

Metaheuristics and heuristics are algorithms that generate
feasible solutions to hard problems. They are used when it is
impossible or too time costly to find an optimal solution to a
problem. Metaheuristics are generally used in partition-based
clustering and are rarely used in HC [13]. Genetic algorithms (GA),
ant colony optimization (ACO), Tabu Search (TS), and simulated
annealing (SA) are some widely used metaheuristics.

GAs are population-based heuristics and the steps are inspired
from biological phenomena. Bandyopadhyay et al. [11] used a two-
stage GA to cluster one artificial and three real microarray data sets.
They employed a variable string length genetic scheme and multi-
objectivity. In the first stage of the algorithm, they used an iterated
version of Fuzzy C-Means (FCM), which is fuzzy version of K-means
to detect the number of clusters. They compared the algorithm to
an HC, an SOM and a Chinese restaurant-based clustering (CRC)
algorithm [105] using two cluster validation indexes: adjusted rand

index [61], and silhouette index [109]. Korkmaz et al. [72] also
employed a multi-objective GA. One of the objectives is minimizing
the total variation within clusters, which is identical to K-means’
objective. The other one is minimizing the number of clusters in a
partition. Faceli et al. [36] presented a Pareto-based multi-objective
GA where objectives to be optimized are validation indices.
Pareto set, the set including the best partitions based on different
objective functions, is used to ensemble the partition pairs to have a
consensus partition. The method is applied to six microarray data
sets. The method is computationally expensive, including the dis-
similarity matrix calculations the complexity is Oðn2 dÞ, where n is
the number of objects, and d is the dimension of an object. The
crossover algorithm is Oðnk2

Þ, where k is the number of clusters
in the consensus partition. Wei and Cheng [134] developed
an entropy-based clustering method in which a GA is applied.
The method uses an adaptive threshold for similarity between
objects and a fitness function to calculate the clustering accuracy.
It was compared to K-means, FCM, and an entropy-based fuzzy
clustering method upon which the proposed algorithm was devel-
oped. Four data sets, one of which is breast cancer data, were
used for comparison. Hageman et al. [50] presented a GA-based
biclustering algorithm with a homogeneous clustering criterion
and introduced a cluster stability criterion. The method is used for
metabolomics data sets.

He and Hui [52] investigated ACO-based algorithms for clus-
tering gene expression data. The proposed algorithm, Ant-C,
consists of four phases: initialization, tour construction, phero-
mone update where ants leave trails on the ground to guide other
ants, and cluster output. Ant-C generates a fully connected graph
where each node is a gene and each edge has a similarity weight,
or pheromone intensity. Average pheromone intensity is used as a
threshold to break the linkage of the fully connected graph to
form clusters. MSTs are used in case of a partially connected
graph to break the linkage of the network. Pheromone intensities
are used as weights of the spanning tree. After finding the MST,
it is partitioned into subtrees that form the clusters. Robbins et al.
[108] also used an ACO algorithm for the feature selection problem

in gene expression data.
TS moves away from the trap of local optimality by using

diversification strategies. Gungor and Unler [48] apply a TS strategy
to K-harmonic means clustering to avoid being trapped at local
minima. The method is tested on Iris data. SA [47,19] also uses a
diversification strategy to avoid being trapped at local optima. There
are many other heuristic clustering approaches for gene expression
data. Particle swarm optimization (PSO) [147,80,33,64], GRASP [31],
honey-bee mating [38], memetic algorithms [90], furthest-point-
first heuristic [42] are some of them.
4.5. Other algorithms

Clustering approaches are not limited to the methods listed in
the sections above. The following explain some of the clustering
approaches which can be classified in one or more of the above
sections, or in a different section.

Fuzzy clustering allows an object to be assigned to more than
one cluster. The strength of each object’s belonging to a cluster is
defined by a membership function that has a value between 0 and
1. The summation of membership values for each gene over all
clusters is 1 [21]. Ravi et al. [106] proposed two fuzzy algorithms,
variants of FCM, based on a threshold accepting heuristic. The
algorithms are compared with FCM using E. coli, Iris, and Thyroid
data sets. The comparison is based upon the number of clusters
and the optimal values of objective functions. Ceccarelli and
Maratea [21] used a learning metric to improve FCM. The new
FCM is used on Iris, breast cancer, rat, sporulation, and yeast data
sets. It is compared with FCM using a modified entropy

index where membership values are considered as probabilities,
normalized and raised to the power p. Saha and Bandyopadhyay
[111] proposed a GA-based fuzzy method having a computational
complexity of Oðk n log n p gÞ, where k is an estimate for the
number of clusters, p is the population size, and g is the number of
generations. The method is compared to an information-based
clustering algorithm using a yeast expression data set and
validated using both a biological validation tool and silhouette
index. Mukhopadhyay and Maulik [95] proposed improved
FCM- and GA-based fuzzy clustering algorithms using a support
vector machine (SVM). The method is tested on diverse
microarray data sets using C-rand and silhouette indices. Alsha-
lalfah and Alhajj [5] also use FCM with SVM on three different
microarray data sets. Other fuzzy clustering algorithms are
provided by Hilt et al. [56], Maulik and Mukhopadhyay [87],
Bandyopadhyay and Bhattacharyya [10].
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Biclustering, or subspace clustering, finds a subset of similarly
expressed genes over a subset of samples. It simultaneously
clusters both rows (i.e., genes) and columns (i.e., conditions or
samples) of a gene expression matrix [92]. One justification to use
biclustering is that microarray data has large number of genes,
which may not be relevant to the features in which a researcher
is interested, and these features mask the contribution of the
relevant ones [92]. Another justification is that co-expressed
genes under certain conditions behave mostly independently
[31]. Li et al. [78] extended a generic biclustering approach
incorporating overlapping capability. The method is convenient
for finding genomes with high genetic exchange and various
conserved gene arrangements. The time complexity of the algo-
rithm is Oðm3ðn2þ log2 mÞÞ, where m is the number of data points
and n is the number of dimensions. Subspace clustering error, row
clustering error, coverage, and discrepancy in the number of
clusters are used for validation purpose. Christinat et al. [26]
showed that using discrete data coupled with a heuristic on
continuous data leads to biclusters which are biologically mean-
ingful. Li et al. [77] presented a qualitative biclustering algorithm
(the source code and the server version of the algorithm are
available), where an expression data matrix is composed of
integer values only. The algorithm is applied on E. coli and yeast
data sets and compared with other biclustering algorithms using
biological enrichment criteria. Cano et al. [20] present an intelli-
gent system for clustering. The system employs three novel
algorithms of which two are biclustering algorithms.

Shen et al. [117] proposed a joint latent variable model for
integrative clustering called iCluster. iCluster is scalable to differ-
ent data types and enables the opportunity for next generation
sequencing, a new emerging technology alternative to microar-
rays. Ma and Chan [83] proposed an iterative approach to mine
overlapping patterns in gene expression data. Their approach
consists of two steps. First, initial clusters are generated using any
clustering algorithm. Second, cluster memberships are reassigned
by a pattern discovery technique. At the end, a gene stays in the
same cluster, changes clusters, or is copied to another cluster.
Shaik and Yeasin [115] presented a unified framework to find
differentially expressed genes from microarray data. The frame-
work consists of three modules: gene ranking, significance ana-
lysis of the genes, and validation. An adaptive subspace iteration
algorithm is used for clustering in the first module. Subspace
structure is identified by an optimization procedure.

Yip et al. [141] presented some search algorithms to find dense
regions in categorized or dichotomized gene expression data.
Meng et al. [89] introduced an enrichment, a validation based on
biological knowledge or database, constrained time dependent
clustering algorithm. The algorithm is specially designed for time
course data and integrated with biological knowledge guidance.
Nueda et al. [102] also presented three novel methodologies for
functional assessment of time course microarray data. Ernst et al.
Table 3
Summary of Algorithm Classes (CRC is the Chinese Restaurant Cluster, ISA and memISA

g is the clique size, s is the significant profile size, and e is the number of edges).

Class Algorithm Compared with Biological data

Flat Richards et al. [107] CRC, ISA, MemISA Brain expression

Hierarchical Langfelder et al. [73] HC, PAM Drosophila PPI

Network Huttenhower et al. [62] Eight clustering algorithms Yeast (� 6000 g

Optimization Dittrich et al. [32] A heuristic approach Human PPI (� 2

Other Ernst et al. [35] K-means, CAGED human (50 profi
[35] designed an algorithm specifically for clustering short time
series expression data.

Model-based clustering algorithms [67,53,133,137,74] have an
assumption that gene expression data follow a statistical distri-
bution and try to recognize the distribution. Information-criterion
based clustering algorithm [81], adaptive clustering [25], neural
network [142], cluster ensemble [59], consensus clustering [93],
and game theoretical applications [94,82] are some of the other
diverse clustering approaches.

Table 3 presents a summary of the reviewed algorithm categories.
The table includes only one example from each category. These
examples were selected based on recency, availability of the algo-
rithm, and the number of times they were cited.

4.6. Choice of an algorithm

One issue in choosing a clustering approach for gene expres-
sion data is its suitability for biological applications. Andreopou-
los et al. [6] listed a general set of desired features that change
based on application and data type used: scalability, robustness,
order insensitivity, minimum user-specified input, mixed data
types, arbitrary-shaped clusters, and point proportion admissi-
bility. Scalability is concerned with time and memory require-
ments, which increase as the data set becomes larger. Robustness
refer to ability to detect outliers. Order insensitivity means that
clusters are not changed as the objects’ orders change. Minimum
user-specified input, as the name suggests, emphasizes a cluster-
ing algorithm’s reliance on user-specified input as little as
possible. Mixed data types and arbitrary-shaped clusters refer to
allowing objects to have numerical descriptive attributes and an
algorithm’s ability to find arbitrarily shaped clusters. Point pro-
portion admissibility means stability of the results when objects
are duplicated and re-clustered.

Another issue in choosing a clustering approach is the ease
with which its performance can be evaluated. Internal and
external performance measures are developed for evaluation.
Internal measures rely on the structure of the partition, whereas
external measures use external information, such as the knowl-
edge of the real clusters. Real clusters for samples are usually
known in advance, since samples are the designed experiments or
the time course data. Clusters of genes are not known in advance
except for the well annotated genes. Thus, using external perfor-
mance measures for algorithms that cluster genes is hard. After
clustering genes, researchers validate the clusters from gene
databases if specific knowledge about the genes is available.
Modularity, as discussed in Section 4.3, is an internal measure
that makes use of the graph’s structure. Modularity is a strong
measure in the sense that gene expression graphs exhibit some
common structures. Silhouette [109] is another internal measure
based on the compactness and separation of the clusters. Adjusted

rand index, or C-rand [61], is an external measure of agreement
between two different partitions, one of which is real. C-rand is
are biclustering algorithms, CAGED is an algorithm designed for time series data,

sets used Validation
method

Complexity Availability

(� 20;000 genes) Biological O(i k n m) Software

External, biological O(n3) R package

enes) Biological Oðng Þ Java

implementation

500 proteins) Biological Oðe2nþen2 log nÞ Software

les) Biological s4 Java

implementation
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applicable even if the partitions do not have the same partition
size [139]. Using simulated data, clusters’ stability on a partition
[37], reproducibility of the clusters [41], statistical significance
between clusters [146], and comparing clustering of a combina-
tion of conditions with remaining conditions [140] are other ways
to test the performance of a gene clustering algorithm.
5. Conclusion and future research for the operations research
community

Clustering is fundamentally an optimization problem [7].
The clustering problem has awakened more interest in the
statistics and computer science disciplines than in the optimiza-
tion community [123]. Hence, the OR community, with an
optimization paradigm, may become involved in and contribute
more to clustering problems in the bioinformatics, computational,
and systems biology disciplines.

No clustering algorithm exists with the best performance for
all clustering problems. This fact makes it necessary to use or
design algorithms specialized for the task at hand. Algorithmic
methods are challenged by the introduction of high throughput
technologies [14]. Guiding any clustering method with biological
theory regarding gene expression data is essential. Mathematical
programming (MP) formalism offers flexibility to incorporate
biological knowledge, and it is crucial to use algorithms guided
by MP models for gene expression data analysis [7]. Hence,
integer programming models taking into account the biological
knowledge would be a promising research direction. Clustering of
gene expression data as a data mining sub-problem includes
challenges providing a relatively hot and fruitful arena for the OR
community [45]. OR has been an underutilized resource in the
research agenda popularized by graph theory [3]. Graph-based
clustering problems may involve more OR researchers to con-
tribute to the agenda.
Acknowledgments

We would like to thank the three anonymous reviewers who
helped tremendously to improve the paper. This work was
supported partially by the National Science Foundation under
grant number NSF EPS-0903787 and by the Mississippi INBRE
(P20RR016476) funded by the National Center for Research
Resources, National Institutes of Health. Dr. Yüceer’s work was
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Appendix A. Glossary

Activator: a metabolite that regulates genes by increasing the
rate of transcription.

Adjusted rand index: see index.
Betweenness: number of shortest paths proceeding along

an edge.
Biological database: database used for validating whether or

not a clustering algorithm generates clusters that are biologically
meaningful. Gene Ontology (GO) is one of the widely used
biological databases.

Classification: a supervised learning technique assigning
objects into groups already known.

Cluster: a group that includes objects with similar attributes.
Clustering is an unsupervised learning technique. Output of
clustering is a set of clusters including similar objects, i.e., genes.
Clustering is also an exploratory technique for network
decomposition [76]. Clustering gathers objects into the same
group based on a cluster definition or criterion.

Clustering: see cluster.
Connectivity: minimum set of genes required to inhibit the

synthesis of a product.
C-rand: see index.
Data pre-processing: a process applied to raw gene expression

data obtained from microarray experiment. Pre-processing
includes quality assessment, filtering, and normalization also
referred to as low-level analysis.

Dendrogram: a tree showing the hierarchical relations between
groups of objects. Level of a dendrogram is the cut-off value to cut
the dendrogram to obtain clusters.

Distance measure: a measure of the relationship between a pair
of objects. Eucledian (eab), Manhattan (mab), Minkovski (mnab) are
some examples. Correlation (cab) is also a widely used distance

measure. However,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cab

p
approximation is used to satisfy the

triangle inequality attribute of a metric. eab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1ðdai�dbiÞ

2
q

,

mab ¼
Pn

i ¼ 1ðdai�dbiÞ, mnab¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1ðdai�dbiÞ

pp

q
, where dai and dbi

are the values of the dimension i for objects a and b.
Entropy index: see index.
Eucledian distance: see distance measure.
eQTL: expression quantitative trait loci, genomic locations

where genotype affects gene expression.
Expression pattern: pattern that a gene exhibits through dif-

ferent conditions, samples.
Factor graph: spanning sub-graph of a graph.
Feature: attribute of a microarray either referring to a spot of it

or a gene.
Feature selection problem: selection of the most important,

relevant genes for further analysis to reduce the dimension of
high-dimensional data.

Filtering: removing the genes that do not exhibit significant
expression change through conditions.

Gene: a functional unit of DNA with coded information.
Reporter genes encode fluorescent proteins by which the expres-
sion level of gene can be observed [51]. The study of genes is
called genomics. Genome refers to all of the fundamental genetic
units, hereditary information, in a biological cell.

Gene expression: transcription of DNA into RNA.
Genome: see gene.
Genomics: see gene.
Hub: gene with high connectivity.
Index: measure for validating the performance of a clustering

algorithm. Adjusted rand index for partitions P1 and P2 ðC-randðP1,P2ÞÞ,
as an external validation index, is one of the most widely used index
for comparing the partition generated by a clustering algorithm with
the real partition. Silhouette index for partition P1 ðSðP1ÞÞ, as an
internal validation index, is used when the real partition of a
biological data is not known. Partition entropy index (PE) is a measure
of asymmetry. C-randðP1,P2Þ, SðP1Þ and PE formulations are

C-randðP1,P2Þ ¼

P
i,jð

ni,j

2 Þ�½
P

ið
ni:
2 Þ
P

jð
n:j
2 Þ�=ð

n
2Þ

1=2½
P

ið
ni:
2 Þþ

P
jð

n:j
2 Þ��½

P
ið

ni:
2 Þ
P

jð
n:j
2 Þ�=ð

n
2Þ

where ni,j is the number of objects at the intersection of clusters
i and j, i is the cluster index for P1, j is the cluster index for P2; ni:

and n:j are the numbers of objects in clusters i and j, respectively.

SðP1Þ ¼

Pn
i ¼ 1

gðiÞ�aðiÞ

maxðoðiÞ,sðiÞÞ
n

where n is the number of genes, o(i) is the minimum of average
distances from gene i to the genes in the other clusters, s(i) is the
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average distance from gene i to the remaining genes in the same
cluster.

PE¼ ð1=nÞ
Pn

i

Pk
j mij loga mij, where k is the number of clusters

and mij is the membership of gene i in cluster j [21].
Manhattan distance: see distance measure.
Metabolite: product of metabolism.
Microarray: a chip consisting of thousands of microscopic

spots, i.e., features containing genes. Two signed microarray data
includes both positive and negative values corresponding to up
and down regulation, respectively.

miRNA: small RNA that binds to mRNA to regulate expression.
mRNA: the RNA transcribed by a gene to be translated into a

protein [86].
Modularity: a measure of improvement on random connectiv-

ity (see Section 4.4 for a mathematical formula).
Next generation sequencing: a high throughput technology that

allows measuring DNA sequences directly rather than indirectly.
Image processing of microarrays is an indirect technology.

Noise: irregularities in the expression data. The sources of
noise are sample preparation and hybridization process [130].
Genes that are irrelevant to clustering, i.e., non-informative genes
[65] are also regarded as noise.

Normalization: transformation of raw expression data to
ensure the comparability of gene expression levels across samples
with the purpose of minimizing the systematic variations arising
from technological issues [120].

Object: gene or sample.
Partition: the output of a clustering algorithm, the set of the

clusters generated.
Priority queue: a heap data structure. A binary tree has a heap

property if and only if it is empty or the key of the root has a
higher value than all of its subtrees. The root node has the highest
value and once it is extracted, regeneration of a single tree from
two subtrees takes Oðlog nÞ time where n is the number of nodes.
Heap tree is filled from left to right, once the root is deleted the
left most leaf is taken as the root. Fig. 9 illustrates a tree with heap
property: (a) when the root is extracted and then the first move is
to bring the left most leaf to vacant root position. Next, the root
value (i.e., 6) is swapped with left subtree’s root value (i.e., 8) and
the resulting new heap tree is shown in (b). The number of swaps
is at most the depth of the complete binary tree which is log n.

Quality assessment: a procedure to be applied on microarray
data to ensure that the data is ready for further analysis.

Regulatory site: 5–15 base-pairs of genes.
Reporter gene: see gene.
Repressor: a protein that represses the transcription of genes.
Reverse engineering: also referred as deconvolution, process of

analyzing biological data to infer about the interaction of biolo-
gical components.

Sample: a microarray chip.
Scale-free topology: a graph topology where the degree dis-

tribution of nodes follows a power law.
Silhouette index: see index.
Fig. 9. Priority queue.
Small world property: a graph where each node has a small
number of neighbors but can reach other nodes after a small
number of steps.

Systems biology: a discipline that deals with the computational
reconstruction of biological systems.

Transcription factor (TF): activator or repressor proteins pro-
duced by genes.

Threshold accepting: a local search strategy that allows up-hill
moves for a minimization objective.

Two-signed microarray expression data: see microarray.
Validation: assessing the performance of a clustering algorithm

either using performance indices or biologically.
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[149] Zhu D, Dequeéant M-L, Li H. (2008) Comparative analysis of clustering
methods for microarray data. In: Emmert-Streib F, Dehmer M, editors.
Analysis of microarray data: a network-based approach, Weinheim,
Germany; Wiley-VCH Verlag GmbH & Co. KGaA; http://dx.doi.org/10.
1002/9783527622818.ch2.

[150] Zhu D, Hero AO, Cheng H, Khanna R, Swaroop A. Network constrained
clustering for gene microarray data. Bioinformatics 2005;21(21):4014–20.


	Clustering of high throughput gene expression data
	Introduction
	Biological background
	Problem definition and representations of gene expression data
	Quantification of relations
	Validation of the partitions
	Representation of expression data and molecular interactions

	Algorithms used for clustering gene expression data
	Flat clustering algorithms
	Hierarchical clustering algorithms
	Level selection methods

	Graph-based clustering algorithms
	Optimization-based algorithms
	Metaheuristic clustering algorithms

	Other algorithms
	Choice of an algorithm

	Conclusion and future research for the operations research community
	Acknowledgments
	Glossary
	References




