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Laser-induced breakdown spectroscopy (LIBS) is an on-line, real-time technology that can produce
immediate information about the elemental contents of tissue samples. We have previously shown that LIBS
may be used to distinguish cancerous from non-cancerous tissue. In this work, we study LIBS spectra
produced from chicken brain, lung, spleen, liver, kidney and skeletal muscle. Different data processing
techniques were used to study if the information contained in these LIBS spectra is able to differentiate
between different types of tissue samples and then identify unknown tissues. We have demonstrated a clear
distinguishing between each of the known tissue types with only 21 selected analyte lines from each
observed LIBS spectrum. We found that in order to produce an analytical model to work well with new
sample we need to have representative training data to cover a wide range of spectral variation due to
experimental or environmental changes.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The interaction of high-power laser light with a target sample has
been an active topic of research in many fields of research and
analysis. When a high-power laser pulse is focused onto the target of
any kind of material (solid, liquid, gas), a small amount of material is
evaporated, initiating an avalanche ionization of the sample
elements and creating a microplasma. The use of lasers to produce
microplasmas to vaporize, dissociate, excite or ionize species on
material surfaces has the potential of becoming a powerful analytical
tool [1–3]. Since nano- to micro-grams of material are ablated in
femto- to nano-seconds (depending on the laser pulse duration), the
whole process can be considered as minimally destructive. This
technique which is based on the spectroscopic study of optical
emission from laser-produced plasmas to obtain information about
the composition of the target material is known as laser-induced
breakdown spectroscopy (LIBS). Since first observed in 1962, LIBS
has been applied mostly to materials analysis, environmental
monitoring and process control [1–5]. Recently, the potential of
applying LIBS to biological samples has been investigated [6–12].
LIBS has been used to study biological samples, such as tissues [6,7],
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gall stones [8], and biological aerosols [9]. It has been used to char-
acterize and identify different bacteria [10,11] and to detect and
identify biological agents [12].

Cancers may occur in situ as a result of metastasis from distant and
ontologically-unrelated tissue. Rapid automated methods of differen-
tiating malignant from non-malignant tissues could save medical
pathologists time and potentially improve cancer diagnosis. We have
previously described the potential for LIBS to differentiate malignant
from neighboring non-malignant tissues [13,14]. Not only can LIBS be
used to differentiate healthy from cancerous tissue, but it could be
used to identify (or at least narrow down the identity of) the primary
organ-source of a metastastic cancer. For this to be possible, however,
we need to establish how well LIBS can differentiate normal tissues.
Also, because LIBS measures elemental composition, it may also be
useful in forensics for rapid detection of tissue origin. Here we deter-
mine whether or not normal tissues from different organs produce
sufficiently different LIBS spectra to be able to identify the organ of
origin. Different data processing techniques for LIBS were also eval-
uated for tissue identification.

2. Experimental details

2.1. Tissue samples and cooling system

Tissue blocks approximately 5–10 mm3 were taken post mortem
from the brain, lung, spleen, liver, kidney and skeletal muscle of 20
normal 6-week old chickens. These tissues were divided into two
groups (see Table 1). The first group, our “known samples,” had 41
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Table 1
Tissue samples used in this work.

Muscle Kidney Liver Lung Spleen Brain

Number of known samples 10 5 5 5 6 10
Number of external validation
samples

10 5 5 5 10 9
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tissues. We assigned random numbers to the remaining 44 samples
and these were analyzed as external validation samples (i.e. blind
sample). These external validation samples were used to evaluate the
classification model obtained from the known tissue samples. Tissue
blocks were frozen at −20 °C prior to analysis.

Immediately prior to LIBS analysis, the tissues were transferred
to a cooling unit to maintain the tissue at −20 °C during LIBS mea-
surement. The small cooling unit, built from a Neslab circulation bath
(RTE-111), was mounted on an X–Y translator. The cooling system,
translator, and tissue were enclosed inside a Perspex box. A 2.5-cm
hole was drilled in the top of the box to allow laser beam entry and to
collect the LIBS signal. The same hole was also used to remove the
ablated sample material from the box.
2.2. LIBS system

The schematic diagram of the experimental setup for tissue
samples is shown in Fig. 1. The experimental details of the LIBS
system is described in references [13,14]. Briefly, a frequency-
doubled, Q-switched Nd:YAG laser (Continuum Surelite III) is
focused onto the sample surface using an ultraviolet (UV)-grade
quartz lens of 300-mm focal length. Atomic emission from the laser-
induced plasma was collected by an optical fiber. The distal end of
the fiber was attached to an UV–VIS echelle, broadband spectro-
graph (ESA3000, LLA Instruments GmbH, Berlin, Germany). The
echelle spectrometer detection system is equipped with a
1024×1024 element intensified charge coupled device (ICCD)
detector (Kodak KAF-1001) with a pixel width of 0.024 mm. The
simultaneous spectral coverage of this detection system is from 200
to 780 nm. The linear dispersion for the echelle spectrometer system
varies from 5 pm/pixel at 200 nm to 19 pm/pixel at 780 nm. The
detector was operated in gated mode using a fast pulse generator
DG-535 (Stanford Research Systems Inc.) and was synchronized to
the laser output pulse. Data acquisition and analysis were performed
using a personal computer with ESAWIN software (LLA Instruments
GmbH, Berlin, Germany).

LIBS spectra were recorded under various experimental conditions
to optimize the LIBS signal. Operating parameters such as laser pulse
energy, detector gate time delay and width were experimentally
Fig. 1. Schematic diagram of LIBS experimental setup.
validated. We found that a gate delay time of 1 μs, a gate width of 5 μs,
and a laser energy of 5 mJ/pulse provided optimal signal-to-noise
ratio (S/N) for tissue measurement and therefore were used to record
the LIBS spectra of all the tissue samples. Since the tissue sample
surface is rough and possibly heterogeneous, we have collected 20
individual spectral frames where each frame was the sum of 10 laser
shots. Finally, these 20 individual frames were averaged to obtain
one resultant spectrum (i.e., each recorded spectrum is a 200-shot
averaged spectrum).

3. Data analysis

Different techniques have been used to identify materials from
LIBS data. The correlation technique and neural networks have been
used to identify polymers [15,16]. Bohling et al. developed a fiber-
optics LIBS sensor for identifying mines and explosives by analyzing
the surface materials with neural networks [17]. Recently, LIBS data
of three chromium-doped soils were analyzed by two chemometric
techniques (i.e., principal components analysis and neural networks
analysis) [18]. Multivariate techniques, such as principal compo-
nents analysis (PCA), have been used to classify biological aerosols
[9]. A discriminant function analysis has been used to discriminate
between the biotypes and E. coli strains [19]. PCA and cluster anal-
ysis have been used for characterizing screen-printed electrodes
with in-depth resolution [20] and for differentiating bacterial
spores, molds, pollens, and protein [21]. Multivariate techniques
have been used to identify preservative types and to predict ele-
mental content in preservative-treated wood [22]. Three chemo-
metric methods, PCA, soft independent modeling of class analogy
(SIMCA) and partial least-squares discriminant analysis (PLS-DA),
have been used to investigate rock identification on the surface of
Mars by remote laser-induced breakdown spectroscopy [23]. In this
work, we have evaluated three different techniques (i.e. cluster
analysis, partial least square discriminant analysis and neural net-
work analysis) for tissue identification. The details of those tech-
niques can be found elsewhere and we give only brief a description
of each technique.

3.1. Cluster analysis

Clustering uses statistical techniques to organize different objects
with similar structure into groups and is used in many social science
and biological science studies [24–27]. Here we used hierarchical
cluster analysis (HCA) to identify the tissue samples. We have fol-
lowed Goodacre's method [28,29] to first perform PCA to reduce the
original multivariate data to a smaller number of factors while
preserving most of the variance. Then discriminant function analysis
(DFA) was performed. DFA uses the derived principal components
and the data of repeated measurements to minimize the variation
within the same group and maximize the variation between different
groups. Finally, HCA uses the similarity matrix constructed from the
DFA space to produce a tree diagram (also called dendrogram) using
average linkage clustering. In average linkage clustering, the measure
of similar structure is based on the mean distance between any
member of one cluster to anymember of another cluster. The PCA and
DFA were performed using both Mathlab 5.3 and GRAMS/AI 7.02. The
Cluster Analysis Program developed by Barton [30] was used to pro-
duce dendrograms.

3.2. Partial least square discriminant analysis (PLS-DA)

Partial least square is a quantitative spectral decomposition tech-
nique that is closely related to principal component regression (PCR)
[31–33]. PCR first decomposes the X-variable (e.g., sample spectral
data) into a set of eigenvectors and scores, and regresses these
against the Y-variable (e.g., sample properties) as a separate step.
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PLS performs single step decomposition in both the X-variables and
Y-variables. It uses the correlation relationship between the X- and
Y-variables to decompose the variables into their most common
variations. PLS generates two sets of vectors and two sets of corre-
sponding scores: one for the X-, and the other for the Y-variables. The
two sets of scores are related to each other through regression, and a
calibration model is then constructed. Our optimized models were
obtained by the “leave one out” cross-validation technique based
on the minimum predicted residual sum of squares (PRESS). The
predictive quality of the models was evaluated by calculating the
standard error of cross validation (SECV) and the standard error of
prediction (SEP) in the validation step with independent samples.
There are two types of PLS, namely, PLS-1 and PLS-2. They are similar,
but PLS-1 processes each Y-variable separately while PLS-2 processes
all the Y-variables simultaneously. PLS can be used for predicting the
constituents of a complex mixture. However, to achieve accurate
prediction, PLS generally needs a large number of samples to build a
calibration model. In this work, PLS-DA, a PLS-based classification
method was used. The Y variables are the class assignment (i.e. tissue
type) and the X variables are the spectral line intensity ratio. Dis-
criminant analysis (DA) is performed in order to produce maximum
separation among classes. PLS-DA was performed with GRAMS/AI
7.02 PLSplus/IQ (Thermo Galactic, Salem NH).

3.3. Neural network analysis (NNA)

Neural networks (NN) can provide solutions to classification and
prediction problems with a high degree of precision and accuracy.
NN has to “learn” from experience before correctly processing
information [34–36]. The network consists of a large number of
simple processing elements (PEs) which are densely intercon-
nected (analogous to neurons of a human brain). With the given
inputs and the related outputs, the networks learn how the inputs
of each data set are associated with the output. The network con-
tinuously refines and organizes itself to fit the data, so that it
produces a relatively accurate response for a given input. NN
analysis uses a mathematical function to discover the relationship
between the input variables and output variables. After the network
learns from the training data, it uses the inferred relationship
between the inputs and the corresponding outputs to make
predictions for unknown input data. Training will be most effective
if the training data spread throughout the input space. The perfor-
mance of a NN model can be evaluated using a root mean square
error of prediction (RMSEP) and a correlation coefficient (R). We
used NeuralWare Predict (NeuralWare, Inc., Pittsburgh, PA) to test
tissue identification.

4. Results

4.1. Tissue Spectra

Typical 200-shot LIBS spectra from the six different tissues are
shown in Fig. 2. The major elements in the tissue samples were
identified from the observed tissue spectra. The most dominant
emission lines associated with those elements and suitable for LIBS
analysis are given in Table 2.

4.2. Tissue identification

Each LIBS tissue spectrum (200–780 nm) contained 53,151 data
points. However not every data point is useful for tissue study. Some
spectral features are not significant for identification. Including
these features in analysis, might cause over-fitting (i.e., fit training
set perfectly but, has large error for new data). Those features should
be considered as unwanted noise to the spectral analysis. Ten LIBS
spectra (200 shots per spectrum) of each sample (total of 41 tissue
samples) were used in the analyses. To reduce the amount of data to
be processed, we have selected only 21 analyte lines (see Table 2) as
the “spectral fingerprint” for the tissue samples. Some atomic lines
which were identified and listed in Table 2 were not included in this
work due to their low signal-to-noise ratio. To eliminate the effect of
laser shot-to-shot variation on the analysis, the area of these analyte
lines were normalized by the area of the Ca 422.6-nm line. The
reason for selection of the Ca 422.6-nm line as reference line is that
this line was found in all tissue samples with relatively high
intensity.

4.2.1. HCA
In this analysis, First, PCA is used to remove data collinearities and

reduce the number of inputs to the DFA. Then DFA used the principal
components (PCs) scores obtained from PCA and the knowledge of
the replicates to remove any sample presentation differences. A clus-
tering program based on the average DF scores was used to produce
a dendrogram. The area ratio data of 20 analyte lines from all 41 tissue
samples were used. The spectra obtained from the same tissue sam-
ple were grouped as the same class in DFA. The dendrograms were
generated with different PCs (from 3 to 13). We found that 11 PCs
gave the best classification results. The dendrogram for all 41 tissue
samples using 11 PCs is shown in Fig. 3. Except for kidney sample Kd2
(circled in Fig. 3), all other samples are grouped correctly with the
same type of tissue sample. Since only a limited number of analyte
lines are used here, it is possible that the selected lines did not provide
sufficient spectral features to well differentiate kidney and brain.
More spectral comparisons are needed to find other spectral features
(i.e., the spectral regions which are not included in this analysis) to be
included in analysis to achieve better identification for these two
tissues.

4.2.2. PLS
Sixty data points from each analyte line were concatenated as one

data record for PLS analysis. We assigned 6 constituent values for
each sample. Each sample had only one constituent value as 1 and the
rest of the constituent values were zero: brain was (1,0,0,0,0,0);
kidney: (0,1,0,0,0); liver: (0,0,1,0,0,0); lung: (0,0,0,1,0,0); muscle:
(0,0,0,0,1,0); and spleen: (0,0,0,0,0,1).We first tested these data with
a preprocessing approach of multiplicative scatter correction (MSC).
We did not find any improvement with MSC as the analyte line was
already normalized to the intensity of the Ca reference line. We also
compared the results from both PLS-1 and PLS-2 and found PLS-2
gave slightly better results as compared with the results from PLS-1.
The final analysis was done for 41 samples using PLS-2 with cross
validation and 10 factors for all six constituents. A variety of
statistical tests (i.e., scores are within the range of scores of the
training data set data for the model; F-test to check that the spectral
residual is statistically similar to the training set data for the model;
the calculated Mahalanobis distance for the sample is less than the
accepted value; and that the predicted concentration values are
within the range of concentration for each constituent in the original
training set) were performed to determine whether the prediction
was successful. The results of the PLS-2 analysis are shown in Fig. 4.
The tissue is identified as the component that is closest to 1. From
Fig. 4, it is clear that the tissue from lung, muscle, spleen, and brain
can be identified with confidence. However, kidney and liver were
identifiedwith a possibility of error due tomore than one constituent
values being much greater than 0 and also due to large standard
deviations.

4.2.3. NN analysis
In NNA, the program separates all 410 data records which come

from 41 samples (each sample has 10 spectra) into training and test
sets to assure robust generalization. Each record consists of 21
analyte line areas obtained from one spectrum. The data were



Table 2
Analyte lines identified from tissue samples.

Element Analyte lines (nm)

Ca 422.673a, 396.847a, 431.865a

Al 309.270a, 396.152a

Fe 371.993a, 404.581a

Cu 324.754a, 327.390a

Na 330.237a, 588.995, 589.592
Zn 330.294a, 307.206a, 307.590a

Cr 357.869a

Mg 279.553a, 285.213a

K 404.414a, 404.721a, 766.491, 769.898
P 255.328a, 253.565a

C 247.857a

Li 670.796
Ni 341.476, 352.454
Mo 317.035
Sn 603.770
Sc 498.345

a Analyte lines used in the HCA analysis.

Fig. 2. LIBS tissue spectra.
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processed for better distributions of values for modeling, using an
algorithm based on a non-linear Kalman filtering learning rule to
build the model. We have assigned arbitrary numerical values to
each sample (i.e., 1 for spleen; 2 for liver; 3 for lung; 4 for muscle; 5
for kidney; 6 for brain). The predicted value was considered a correct
identification when the difference between the actual value and
predicted value was less than 0.5. In order to evaluate the
performance of the NN model for predicting the data that it has not
seen before, the NN model needed to be tested. The model's
performance was tested and the results are presented in Fig. 5.
Only 408 records were used in the final test because two records
were considered as outliers in the initial test and were excluded. The
relatively small difference between correlation values (~0.98)
suggests that the model generalizes well and that it is likely to
make accurate predictions when it processes unknown data. The
prediction results using this model are shown in Fig. 5. The error bars
in the plot represent the standard deviation obtained from 10 spectra
of the same sample.



Fig. 3. The dendrogram for all 41 tissue samples.

Fig. 5. Tissue analysis results using NNA.
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4.3. External validation

To test if LIBS spectra alone can be used to identify the unknown
tissues, we have used the techniques described above with external
Fig. 4. Tissue analysis r
validation sample data. The data of the external validation samples
were taken on different dates from the known sample data that was
used to create the model. It is a test to check if a slight difference in
experimental setup, environment or system performance could cause
spectral differences and consequently identification errors with a
calibration model built earlier. We first used PCA to reduce the size of
the data set prior to applying alternate methods of data analysis. PCA
was also used to find the correlation between the spectral data in the
known and external validation samples. Fig. 6 shows a plot of PCA
scope for PCs 1 and 2 of the brain tissue data. The known brain tissue
samples are grouped together as are the external validation brain
tissue samples. However these two groups are wildly separated in
esults using PLS-2.



Fig. 6. Factor plot for brain tissue data and external validation brain tissue data.
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PC1. This shows that it might be challenging to correctly identify
external validation tissue samples with a model built previously. We
can use the external validation test sample data to determine the
model's long term stability.
4.3.1. HCA
The tree diagram for all external validation samples is shown in

Fig. 7. It clearly shows that all the samples are grouped correctly
with the same type of tissue sample except for tissue samples No. 94
(muscle), 74 (kidney), and 50 (lung). Then we performed an
analysis for both known tissue samples and external validation
samples. We put all data of external validation set of samples into a
data array and performed HCA. Fig. 8a shows that all the external
validation liver samples closely group with the known liver samples.
Fig. 8b shows that except for tissue No. 50 (lung), all external
validation lung sample have a short linking distance with known
lung. Fig. 8c shows that all the external validation muscle tissues are
more closely linked to the known muscle samples than to any other
Fig. 7. The dendrogram for all external validation set of tissue samples.
known tissues. Fig. 8d shows that two external validation spleen
samples grouped correctly with spleen, but the rest of them did not
(although they grouped close together). Fig. 8e (brain) shows a
similar case as for the external validation spleen samples. Only
tissue No. 318 grouped correctly with known brain samples. Tissue
No. 744 was closer to the brain–kidney group. The rest of the
external validation brain samples grouped together. Fig. 8f shows
that only two external validation kidney samples closely grouped
with known kidney samples: one grouped with brain, and the other
two were closer to the brain–kidney group than the rest of the
tissues.

4.3.2. PLS
The calibration model of PLS-2 built with 41 known tissue

samples was used to predict the external validation tissue sample.
All 44 external validation tissue samples were analyzed with this
PLS-2 calibration model. The results of PLS analysis are shown in
Table 3 in which each external validation sample was assigned as
correct identification (i.e., prediction match with the true tissue),
incorrect identification (i.e., prediction match with others than the
true tissue), or failure. The failure was determined based on the
statistics tests described in Section 4.2.1. The data of external vali-
dation muscle, kidney and liver samples have 60% correct identifi-
cation rates using the model built with known tissue data. However,
over half of the external validation brain and spleen data failed the
PLS-2 prediction test. Only about 30–45% of these data gave correct
identification.

4.3.3. NN results
The NN model, which was trained and tested with a1l data of

known tissue samples, was tested with the data of the external
validation set of samples. The data of the external validation set of
tissue samples, organized the same way as the training data, were
input and processed by NNA. The prediction results of the external
validation samples are shown in Table 4. The model performed well
for muscle and spleen but not well for the other tissues. Two possible
reasons that themodel did not performwell are: (1.) the data used to
train the model may not be statistically representative of the data
population and (2.) the model may be over-fitting the data. The PCA
analysis has shown a small difference in the spectral features in the
unknown set that is not in the representative data (used to model).
This can cause poor prediction results with NNA. It is possible to
improve the NNA prediction by building neural network models that
represent a wider range of experimental conditions, such as different
collection dates, incident pulse energies, sample-to-lens distances,
etc. Also constructing the NN model by increasing the number of
data recorded with less averaging may also improve the tissue
predictions.

5. Conclusions

In this work we have studied the analysis of LIBS data with
chemometric techniques to identify different biological tissues. Six
tissues (i.e., brain, lung, spleen, liver, kidney and skeletal muscle)
from 20 normal 6-week old chickens were used in this study. We
used 21 selected analyte lines from each observed LIBS spectrum in
all analyses. We found that the results are reasonably good for all the
known tissue samples, i.e., we could clearly distinguish (or group)
between each of the tissue types. We then tested LIBS analysis on
one batch of 44 tissues that were each assigned a random number.
These samples were analyzed “blind”. Since data of these external
validation samples were taken on different dates from the data used
to train the model, slight spectral variations between the training
data and test data were not properly modeled. This resulted in
poorer identification results with external validation samples. This
shows that in order for a model to work well, we need to have



Fig. 8. The dendrogram for external validation tissue samples along with known tissue samples. a. Liver; b. Lung; c. Muscle; d. Spleen; e. Brain; f. Kidney.
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representative training data to cover a wide range of spectral varia-
tion due to experimental or environmental changes. To improve the
correct identification rate, the number of spectra from each sample
needs to increase to improve the statistics; we need to select more
spectral lines for analysis, and reject outliers. Also the selection of
analyte lines plays a key role for correct identification. The selec-
tion of irrelevant lines will not help in classification and sometimes
causes overfitting. The multivariate techniques are known to be
efficient methods for sorting and classifying data. However, the
results of this study shows that better reproducibility data are
needed to produce robust classificationmodels. More work on tissue
identification using LIBS spectroscopy will continue. The study will
extend to characterize different normal animal tissues and more
importantly, to differentiate tumor tissues from normal ones, and
thus demonstrating medical diagnosis potential.
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Table 3
PLS-2 results of the external validation tissue samples.

Tissue sample Muscle Lung Liver Kidney Spleen Brain

No.a Pred.b No.a Pred.b No.a Pred.b No.a Pred.b No.a Pred.b No.a Pred.b

External validation samples 482 Muscle 672 Lung 776 Fail 843 Brain 163 Fail 717 Fail
658 Fail 383 Lung 415 Brain 690 Kidney 185 Fail 744 Brain
14 Fail 838 Lung 486 Liver 74 Kidney 27 Fail 162 Brain
16 Muscle 192 Lung 788 Liver 631 Brain 317 Fail 184 Fail
340 Muscle 50 Lung 563 Liver 837 Kidney 211 Fail 212 Brain
341 Fail 657 Spleen 970 Fail
572 Liver 718 Liver 653 Fail
94 Muscle 743 Fail 26 Fail
97 Muscle 969 Spleen 318 Brain
968 Muscle 652 Spleen

Correct identification rate 6/10 5/5 3/5 3/5 3/10 4/9
Fail statistics test rate 3/10 0/5 1/5 0/5 6/10 5/9
Incorrect identification rate 1/10 0/5 1/5 2/5 1/10 1/9

a Tissue number.
b PLS-2 prediction.

Table 4
NNA results of the external validation tissue samples.

Tissue sample Muscle Brain Kidney Liver Lung Spleen

No.a Pred.b No.a Pred.b No.a Pred.b No.a Pred.b No.a Pred.b No.a Pred.b

External validation samples 482 Muscle 717 Muscle 843 Kidney 776 Muscle 672 Lung 185 Spleen
658 Muscle 744 Brain 690 Muscle 415 Lung 383 Muscle 27 Spleen
14′ Muscle 162 Kidney 74 Muscle 486 Lung 838 Lung 317 Spleen
16 Lung 184 Brain 631 Kidney 788 Lung 192 Muscle 211 Spleen
340 Muscle 212 Kidney 837 Muscle 563 Liver 50 Muscle 657 Liver
341 Muscle 970 Kidney 718 Spleen
572 Muscle 653 Kidney 743 Spleen
94 Muscle 26 Kidney 969 Spleen
97 Muscle 318 Brain 652 Spleen
968 Muscle

Correct identification rate 9/10 3/9 2/5 1/5 2/5 9/10
Incorrect identification rate 1/10 6/9 3/5 4/5 3/5 1/10

a Tissue number.
b NNA prediction.
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