The IGBB logo features a stylized "pinwheel" to the left of the letters IGBB in caps in a modified Bank Gothic Pro font.
The six-part "pinwheel" in the IGBB logo is:
- A symbol of lab unity as it shows "parts" coming together to make a "whole."
- A flower or three-leaf clover representing (a) plants, important subjects of our research, (b) life in general, and (c) the life sciences (biology).
- A set of chromosomes being moved towards the center of a cell.
- The Sun - another symbol of life.
- A protein composed of six subunits (e.g., a protein pore).
- Three foxes putting their heads together. The fox is a symbol of cleverness in Western folklore. Since the IGBB is organized into three service groups (Genomics, Proteomics/Metabolomics, and Biocomputing/Computational Biology), the foxes could represent the three disciplines working together.
- A scientist jumping for joy after making an important discovery.
- A windmill, the primary symbol associated with Cervantes' famous character Don Quixote - Like Don Quixote, scientists must be willing to attack 'wicked giants' (e.g., ignorance, racism, sexism, intolerance, use of the term 'science' in the promotion of non-scientific causes), champion worthy causes (e.g., education, intellectual freedom, human rights, environmental responsibility), and remain optimistic in the face of defeat (e.g., most days in the lab). Hopefully, however, the average scientist can accomplish these tasks without becoming delusional (a problem that squashed Quixote's dreams of becoming a plant molecular biologist).
- A DNA double-helix or protein in cross section.
- Antibodies binding to a protein.
- Whatever you want it to be.

Dr. Mohit VermaPostdoctoral Associate
BIOCOMPUTING
emailPace 101

Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics
IGBB Authors:
Fiona M. McCarthy, Shane C. BurgessPUBLICATION YEAR:
2005IMPACT FACTOR:
7.194CITATION COUNT:
70McCarthy FM, Burgess SC, van den Berg BH, Koter MD, Pharr GT (2005) Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics.
Journal of Proteome Research 4(2): 316-324.
DOI:
10.1021/pr049842dEID:
2-s2.0-17444400484PMID: 15822906
DOWNLOAD PDFABSTRACTDifferential detergent fractionation (DDF), which relies on detergents to sequentially extract proteins from eukaryotic cells, has been used to increase proteome coverage of 2D-PAGE. Here, we used DDF extraction in conjunction with the nonelectrophoretic proteomics method of liquid chromatography and electrospray ionization tandem mass spectrometry. We demonstrate that DDF can be used with 2D-LC ESI MS2 for comprehensive cellular proteomics, including a large proportion of membrane proteins. Compared to some published methods designed to isolate membrane proteins specifically, DDF extraction yields comprehensive proteomes which include twice as many membrane proteins. Two-thirds of these membrane proteins have more than one trans-membrane domain. Since DDF separates proteins based upon their physicochemistry and subcellular localization, this method also provides data useful for functional genome annotation. As more genome sequences are completed, methods which can aid in functional annotation will become increasingly important.
The IGBB is supported, in part, by the following units:
The IGBB is an HPC² member center.