The IGBB logo features a stylized "pinwheel" to the left of the letters IGBB in caps in a modified Bank Gothic Pro font.
The six-part "pinwheel" in the IGBB logo is:
- A symbol of lab unity as it shows "parts" coming together to make a "whole."
- A flower or three-leaf clover representing (a) plants, important subjects of our research, (b) life in general, and (c) the life sciences (biology).
- A set of chromosomes being moved towards the center of a cell.
- The Sun - another symbol of life.
- A protein composed of six subunits (e.g., a protein pore).
- Three foxes putting their heads together. The fox is a symbol of cleverness in Western folklore. Since the IGBB is organized into three service groups (Genomics, Proteomics/Metabolomics, and Biocomputing/Computational Biology), the foxes could represent the three disciplines working together.
- A scientist jumping for joy after making an important discovery.
- A windmill, the primary symbol associated with Cervantes' famous character Don Quixote - Like Don Quixote, scientists must be willing to attack 'wicked giants' (e.g., ignorance, racism, sexism, intolerance, use of the term 'science' in the promotion of non-scientific causes), champion worthy causes (e.g., education, intellectual freedom, human rights, environmental responsibility), and remain optimistic in the face of defeat (e.g., most days in the lab). Hopefully, however, the average scientist can accomplish these tasks without becoming delusional (a problem that squashed Quixote's dreams of becoming a plant molecular biologist).
- A DNA double-helix or protein in cross section.
- Antibodies binding to a protein.
- Whatever you want it to be.


Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility
IGBB Authors:
Bindu Nanduri, Jean-Magloire Nguekam Feugang, Shane C. Burgess, Erdogan MemiliPUBLICATION YEAR:
2008IMPACT FACTOR:
3.105CITATION COUNT:
241Peddinti DS, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E (2008) Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility.
BMC Systems Biology 2: 19.
DOI:
10.1186/1752-0509-2-19EID:
2-s2.0-42049123062PMID: 18294385
DOWNLOAD PDFABSTRACTBACKGROUND: Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. RESULTS: Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. CONCLUSION: This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.
The IGBB is supported, in part, by the following units:
The IGBB is an HPC² member center.