The IGBB logo features a stylized "pinwheel" to the left of the letters IGBB in caps in a modified Bank Gothic Pro font.
The six-part "pinwheel" in the IGBB logo is:
- A symbol of lab unity as it shows "parts" coming together to make a "whole."
- A flower or three-leaf clover representing (a) plants, important subjects of our research, (b) life in general, and (c) the life sciences (biology).
- A set of chromosomes being moved towards the center of a cell.
- The Sun - another symbol of life.
- A protein composed of six subunits (e.g., a protein pore).
- Three foxes putting their heads together. The fox is a symbol of cleverness in Western folklore. Since the IGBB is organized into three service groups (Genomics, Proteomics/Metabolomics, and Biocomputing/Computational Biology), the foxes could represent the three disciplines working together.
- A scientist jumping for joy after making an important discovery.
- A windmill, the primary symbol associated with Cervantes' famous character Don Quixote - Like Don Quixote, scientists must be willing to attack 'wicked giants' (e.g., ignorance, racism, sexism, intolerance, use of the term 'science' in the promotion of non-scientific causes), champion worthy causes (e.g., education, intellectual freedom, human rights, environmental responsibility), and remain optimistic in the face of defeat (e.g., most days in the lab). Hopefully, however, the average scientist can accomplish these tasks without becoming delusional (a problem that squashed Quixote's dreams of becoming a plant molecular biologist).
- A DNA double-helix or protein in cross section.
- Antibodies binding to a protein.
- Whatever you want it to be.


Efficient capture of unique sequences from eukaryotic genomes
IGBB Authors:
Daniel G. PetersonPUBLICATION YEAR:
2002IMPACT FACTOR:
7.986CITATION COUNT:
68Peterson DG, Wessler SR, Paterson AH (2002) Efficient capture of unique sequences from eukaryotic genomes.
Trends in Genetics 18(11): 547-550.
DOI:
10.1016/S0168-9525(02)02764-6EID:
2-s2.0-0036843242PMID: 12414178
DOWNLOAD PDFABSTRACTCot-based cloning and sequencing (CBCS), a synthesis of Cot analysis, DNA cloning and high-throughput sequencing, promises to accelerate the study of eukaryotic genomes. In particular, CBCS will (1) permit efficient gene discovery in species with substantial quantities of repetitive DNA, (2) allow the sequence complexity (i.e. all the unique sequence information) of large genomes to be elucidated at a fraction of the cost of shotgun sequencing, and (3) enhance genome sequencing efforts by facilitating capture of low-copy sequences not secured by EST sequencing. CBCS should accelerate comparative genomics research, especially in large genomes such as those of many crops.
The IGBB is supported, in part, by the following units:
The IGBB is an HPC² member center.