Proteomics & Metabolomics
In addition to doing work on existing IGBB projects, the IGBB proteomics staff can
perform a variety of mass spectrometry and other proteomics services for MS State principal investigators and
IGBB collaborators. Such research can be performed through a Proposal Partnership,
a Research Agreement, or the Service Center.
The
IGBB's proteomics staff has considerable expertise in...
- Protein isolation/purification from all types of organisms/tissues
- 1D & 2D gel electrophoresis
- Gel- and non-gel-based mass spectrometry
- Protein identification
- Discovery and characterization of post-translational modifications;
- Quantitative proteomics
- Comparative proteomics & metabolomics
- Western blotting & protein visualization
- Integration of proteomic and nucleic acids data (e.g., proteogenomic
mapping)
- Functional annotation of proteins using Gene Ontology (GO)
standards and procedures
With regard to mass spectrometers, the IGBB's proteomics staff utilizes a ThermoFisher LTQ Orbitrap Velos, a Waters Nano ESI Q-TOF (model Xevo G2-S), and an Applied Biosystems (now ThermoFisher) MALDI TOF TOF. The LTQ Orbitrap Velos and the Nano ESI Q-TOF are fitted with upstream HPLC sample
purification systems.
To discuss the possibility of having the IGBB conduct
proteomics research in collaboration with you, please submit a ticket through the MyIGBB HelpDesk.
An IGBB proteomics consultant will respond to your query as quickly as possible
(usually within 24 hours).
A listing of IGBB Standard Services and their prices -- including information and prices for Training and Self-Service Equipment Usage -- is available in the Standard Services Catalog in MyIGBB and in PDF form via the link below.
ALSO SEE: Genomics (including Transcriptomics) | Biocomputing (Bioinformatics & Computational Biology)
NOTE: PIs are asked to consider whether the participation of an IGBB employee in a project merits that employee's inclusion as a co-author on a resulting manuscript(s). The decision ultimately lies with the PI. However, the IGBB encourages IGBB staff and faculty involved in
Proposal Partnerships and
Research Agreements to discuss/negotiate co-authorship with PIs before starting work on a project.
Lynn HesterBusiness Manager II
FINANCIAL
email(662) 325-8278
Portera

Adverse outcome pathway (AOP) development I: Strategies and principles
IGBB Authors:
Natàlia Garcia-ReyeroPUBLICATION YEAR:
2014IMPACT FACTOR:
5.023CITATION COUNT:
594Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014) Adverse outcome pathway (AOP) development I: Strategies and principles.
Toxicological Sciences 142(2): 312-320.
DOI:
10.1093/toxsci/kfu199EID:
2-s2.0-84921451260PMID: 25466378
DOWNLOAD PDFABSTRACTAn adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organization of regulatory relevance. Systematic organization of information into AOP frameworks has potential to improve regulatory decision-making through greater integration and more meaningful use of mechanistic data. However, for the scientific community to collectively develop a useful AOP knowledgebase that encompasses toxicological contexts of concern to human health and ecological risk assessment, it is critical that AOPs be developed in accordance with a consistent set of core principles. Based on the experiences and scientific discourse among a group of AOP practitioners, we propose a set of five fundamental principles that guide AOP development: (1) AOPs are not chemical specific; (2) AOPs are modular and composed of reusable components-notably key events (KEs) and key event relationships (KERs); (3) an individual AOP, composed of a single sequence of KEs and KERs, is a pragmatic unit of AOP development and evaluation; (4) networks composed of multiple AOPs that share common KEs and KERs are likely to be the functional unit of prediction for most real-world scenarios; and (5) AOPs are living documents that will evolve over time as new knowledge is generated. The goal of the present article was to introduce some strategies for AOP development and detail the rationale behind these 5 key principles. Consideration of these principles addresses many of the current uncertainties regarding the AOP framework and its application and is intended to foster greater consistency in AOP development.
The IGBB is supported, in part, by the following units:
The IGBB is an HPC² member center.