Proteomics & Metabolomics
In addition to doing work on existing IGBB projects, the IGBB proteomics staff can
perform a variety of mass spectrometry and other proteomics services for MS State principal investigators and
IGBB collaborators. Such research can be performed through a Proposal Partnership,
a Research Agreement, or the Service Center.
The
IGBB's proteomics staff has considerable expertise in...
- Protein isolation/purification from all types of organisms/tissues
- 1D & 2D gel electrophoresis
- Gel- and non-gel-based mass spectrometry
- Protein identification
- Discovery and characterization of post-translational modifications;
- Quantitative proteomics
- Comparative proteomics & metabolomics
- Western blotting & protein visualization
- Integration of proteomic and nucleic acids data (e.g., proteogenomic
mapping)
- Functional annotation of proteins using Gene Ontology (GO)
standards and procedures
With regard to mass spectrometers, the IGBB's proteomics staff utilizes a ThermoFisher LTQ Orbitrap Velos, a Waters Nano ESI Q-TOF (model Xevo G2-S), and an Applied Biosystems (now ThermoFisher) MALDI TOF TOF. The LTQ Orbitrap Velos and the Nano ESI Q-TOF are fitted with upstream HPLC sample
purification systems.
To discuss the possibility of having the IGBB conduct
proteomics research in collaboration with you, please submit a ticket through the MyIGBB HelpDesk.
An IGBB proteomics consultant will respond to your query as quickly as possible
(usually within 24 hours).
A listing of IGBB Standard Services and their prices -- including information and prices for Training and Self-Service Equipment Usage -- is available in the Standard Services Catalog in MyIGBB and in PDF form via the link below.
ALSO SEE: Genomics (including Transcriptomics) | Biocomputing (Bioinformatics & Computational Biology)
NOTE: PIs are asked to consider whether the participation of an IGBB employee in a project merits that employee's inclusion as a co-author on a resulting manuscript(s). The decision ultimately lies with the PI. However, the IGBB encourages IGBB staff and faculty involved in
Proposal Partnerships and
Research Agreements to discuss/negotiate co-authorship with PIs before starting work on a project.
Michelle LathamBusiness Coordinator
PURCHASING
email(662) 325-4075
Portera

FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar
IGBB Authors:
Chuan-Yu Hsu, Joshua P. Adams, Dawn S. Luthe, Cetin YuceerPUBLICATION YEAR:
2011IMPACT FACTOR:
10.425CITATION COUNT:
365Hsu C-Y, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, DePamphilis CW, Luthe DS, Yuceer C (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar.
Proceedings of the National Academy of Sciences of the United States of America 108(26): 10756-10761.
DOI:
10.1016/10.1073/pnas.1104713108EID:
2-s2.0-79960615345PMID: 21653885
DOWNLOAD PDFABSTRACTAnnual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.
The IGBB is supported, in part, by the following units:
The IGBB is an HPC² member center.